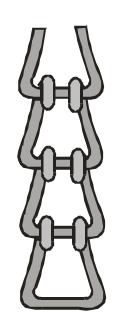
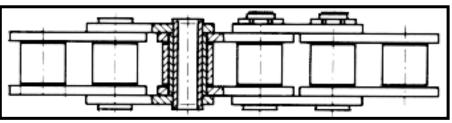

CHAINS

Open-link chains


functioning without lubrication

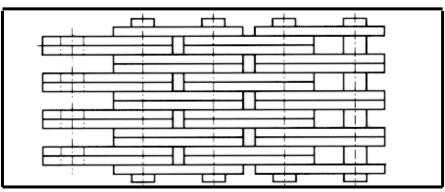
normal open-link chain

stud-link or anchor chain

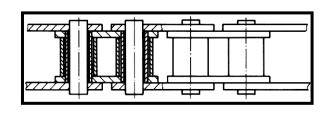


caterpillar-type drive chain (similar to track chains)

Link chains

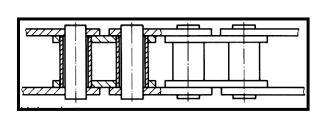

Load chains

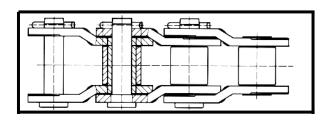
liner chain



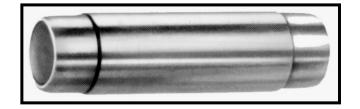
Fly-frame chain without chain sprockets

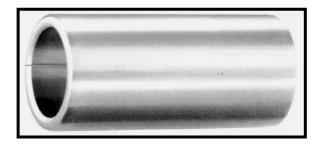

Link chains


Drive chains

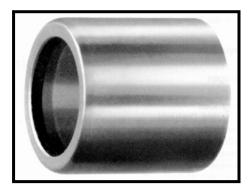

roller chain

bush chain




rotary chain

Construction of roller chains


Pin

Bushing

Roller

Side bar or plate

Chain failures and their reasons

Noise

Inadequate lubrication causes metallic friction which effects grating and squeaking.

Broken Pins and Side Bars

Often by overloading or corrosion in the chain joint

Dirtiness

At heavily soiled chains the oil only can partially and not completely penetrate into the chain joints.

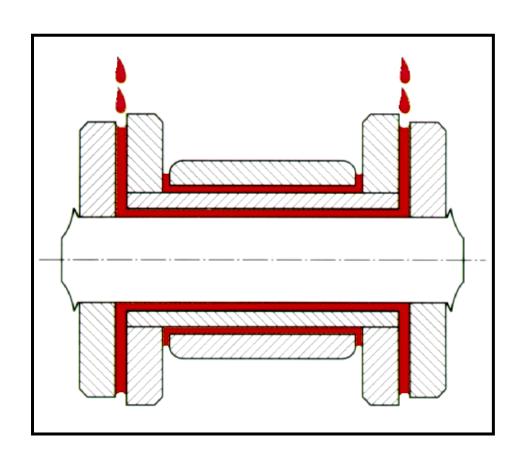
Stiff Joints

After leaving the sprocket wheel the chain does not get back to its stretched length. Reasons are cold seizing, corrosion of the joint or residues of unsuitable lubricants, caused by insufficient or wrong lubrication.

Rust on Surface and Joint

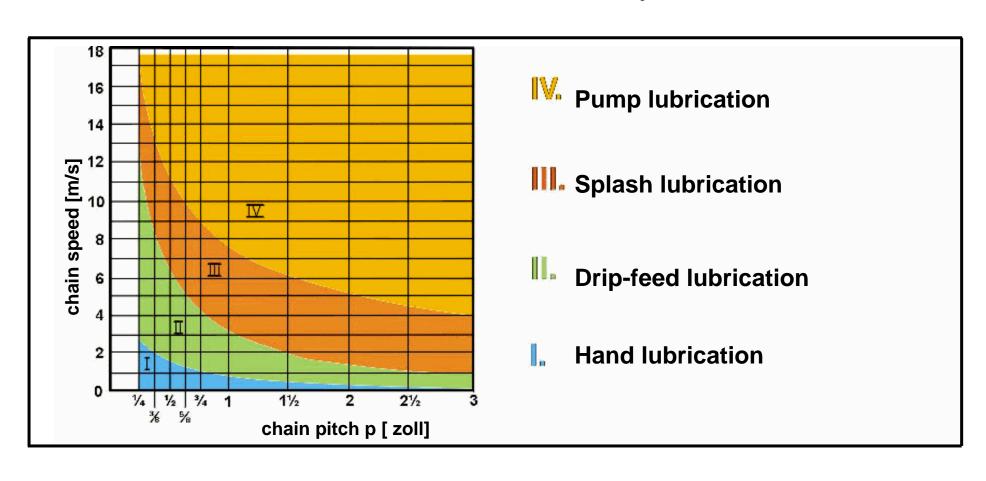
Reasons are inadequate lubrication or insufficient corrosion protection.

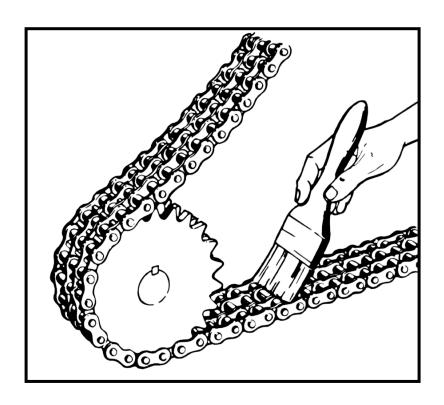
Elongation of Chains



Already with a 3% elongation, the sprocket has no more chance to gear in perfectly.

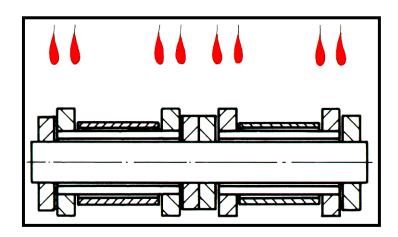
Even with optimal lubrication, chain stretching will occur after long operation time. However with an adequate lubrication the lifetime is 60 times longer than at dry running


Lubricant requirements

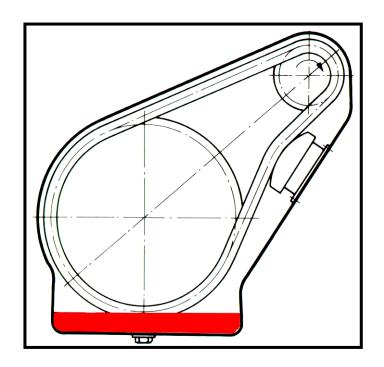

- Lubricating performance
- Wear protection
- Penetrative and clearance fitting ability
- Noise suppression
- Corrosion protection
- Adhesive ability
- Temperature stability
- Resistance to media
- Food grade property
- Environmentally safe

Selection of a lubricant

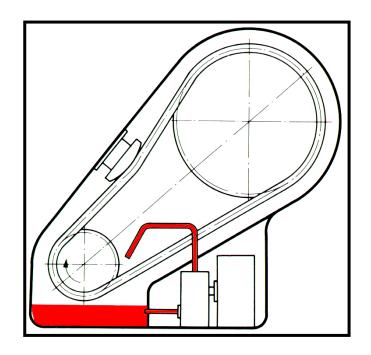
Guideline for the recommended way of lubrication



Hand Iubrication


Lubrication by an oil can or a brush is a very unsure method. It is not useful for continuous operation and therefore only suitable for driving units of minor importance and slow chain speeds.

Drip-feed Iubrication

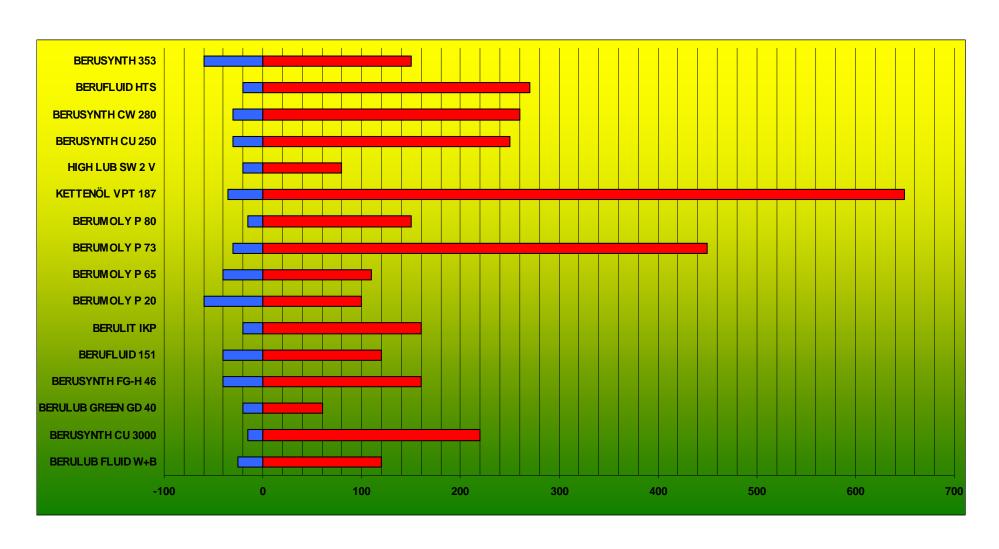

Lubrication by wick, needle or drip oiler is suitable for driving units with low stress. In order that the lubricant will attain the linkages, the dripping pipes outlets have to be placed above the pin row.

Splash lubrication in an oil bath

A chain protection case has a soundproofing effect. Its dimension should be such big, that the elongated chain does not beat against the walls. The chain pins should immerse into the bath not more than to the rollers or bushings. At the oil bath there is no loss of the lubricant.

Forced-feed circulatory lubrication

Used for fast running chains and subject to high loads.

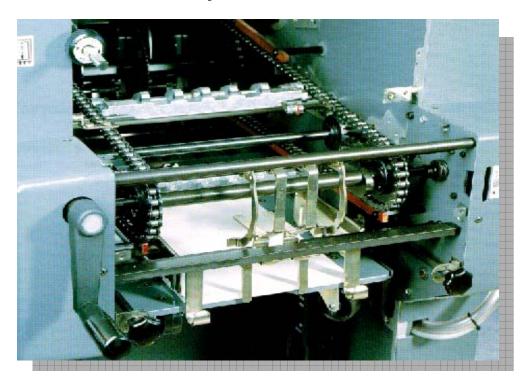

Oil feeding may be carried out by connecting it to an already installed pressure oil pipe or a pump. The oil spurts from the pipe on the whole width of the chain on the inner side of the pulling strand and in direction of the course.

Lubricant Selection

Guideline for the recommended ISO viscosity of Chain Oils

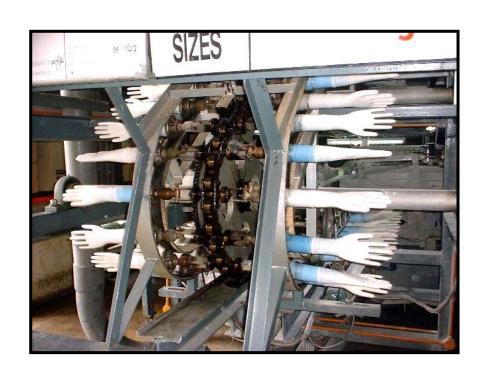
Joint surface pressure (N/mm²)	Chain speed (m/s)							
	1	1 to 5	> 5	< 5	> 5			
	ISO VG class manual or drip lubrication			ISO VG class splash lubrication				
< 10	32	46	68	32	46			
10 to 20	46	68	100	46	68			
20 to 30	68	100	150	68	100			

Temperature range of BECHEM chain lubricants



BECHEM chain lubricants

Operating conditions	Temperature	BECHEM	Base oil	Solid	Kin. Visc. at	Main
Operating conditions	range (°C)	product	Dase Oil	lubricant	40°C (mm²/s)	industries
small chains, ambient temperature, dust, moisture	-40 to +110	BERUMOLY P 65	mineral	MoS2	2	Cement, Mining
heavily loaded chains, ambient temperature, water, steam, aggresive chemicals	-15 to +150	BERUMOLY P 80	mineral / synthetic	MoS2	12	Construction
large chains, heavily loaded, dust	-20 to +160	BERULIT IKP	mineral	Graphite	100	Mining
high temperature, medium load, lubricating system	-30 to +450	BERUMOLY P 73	synthetic	MoS2	100	Ceramic
very high temperature, high load, manual lubrication or special systems	-35 to +650	KETTENÖL VPT 187	synthetic	MoS2	semifluid	Steel
very high temperature, medium load, lubricating systems	-30 to +250	BERUSYNTH CU 250	synthetic		250	Textile, Rubber
very high temperature, high load, lubricating systems	-30 to +260	BERUSYNTH CW 280	synthetic		280	MDF Plants
agressive chemicals, water, ambient temperatures	-20 to +80	HIGH LUB SW 2-V	mineral		liquid	Ship buiding, Habour
open chains, high speed, water, steam, aggresive chemicals	-15 to +220	BERUSYNTH CU 3000	synthetic		3000	Food and beverage
precision chains, multi-purpose, ambient temperatures	-40 to +160	BERUSYNTH FG-H 46	synthetic		46	Food and beverage
multi-purpose, ambient temperatures	-25 to +120	BERULUB FLUID W+B	mineral		67	Mechanics, Food


Example of a lubricant application

Chains in packaging equipment industries lubricated by BERUSYNTH FG-H 46

Example of a lubricant application

Chains in the surgical rubber glove industries lubricated by BERUSYNTH CU 250

